Example 1.1 Converting Temperatures:

On a day when the temperature reaches $50^{\circ} \mathrm{F}$, what is the temperature in degrees Celsius and in kelvins?

A pan of water is heated from $25^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$. What is the change in its temperature on the Kelvin scale and on the Fahrenheit scale?

Example 1.2 Expansion of a Railroad Track

A segment of steel railroad track has a length of 30.000 m when the temperature is $0.0^{\circ} \mathrm{C}$. (considering linear expansion coefficient of steel is $11 \times 10^{-6}\left({ }^{\circ} \mathrm{C}\right)^{-1}$ and its Young's modulus is $20 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}$).
(A) What is its length when the temperature is $40.0^{\circ} \mathrm{C}$?
(B) Suppose that the ends of the rail are rigidly clamped at $0.0^{\circ} \mathrm{C}$ so that expansion is prevented. What is the thermal stress set up in the rail if its temperature is raised to $40.0^{\circ} \mathrm{C}$?

Example 1.3 How Many Moles of Gas in a Container?

An ideal gas occupies a volume of $100 \mathrm{~cm}^{3}$ at $20^{\circ} \mathrm{C}$ and 100 Pa . Find the number of moles of gas in the container.

Example 2.1: Losing Weight the Hard Way

A student eats a dinner rated at 2000 Kilocalories. He wishes to do an equivalent amount of work in the gymnasium by lifting a $50.0-\mathrm{kg}$ barbell. How many times must he raise the barbell to expend this much energy? Assume he raises the barbell 2.00 m each time he lifts it and he regains no energy when he lowers the barbell.

Example 2.2 Cooling a Hot Ingot:

A $0.0500-\mathrm{kg}$ ingot of metal is heated to $200.0^{\circ} \mathrm{C}$ and then dropped into a calorimeter containing 0.400 kg of water initially at $20.0^{\circ} \mathrm{C}$. The final equilibrium temperature of the mixed system is $22.4^{\circ} \mathrm{C}$. Find the specific heat of the metal.

Example 2.3 Fun Time for a Cowboy:

A cowboy fires a silver bullet with a muzzle speed of $200 \mathrm{~m} / \mathrm{s}$ into the pine wall of a saloon. Assume all the internal energy generated by the impact remains with the bullet. What is the temperature change of the bullet? Using $234 \mathrm{~J} / \mathrm{kg} .{ }^{\circ} \mathrm{C}$ as the specific heat of silver.

Example 2.4 Boiling Liquid Helium

Liquid helium has a very low boiling point, 4.2 K , and a very low latent heat of vaporization, 2.09 \% $104 \mathrm{~J} / \mathrm{kg}$. If energy is transferred to a container of boiling liquid helium from an immersed electric heater at a rate of 10.0 W , how long does it take to boil away 1.00 kg of the liquid?

